• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
含钙镁煤基固废CO 2矿化封存及其产物性能研究进展
  • Title

    Research progress on CO2mineralization of coal-based solid waste containing calcium and magnesium and its product performance

  • 作者

    高影涂亚楠王卫东李振齐永心张佳峰

  • Author

    GAO Ying;TU Yanan;WANG Weidong;LI Zhen;QI Yongxin;ZHANG Jiafeng

  • 单位

    中国矿业大学(北京) 化学与环境工程学院西安科技大学 化学与化工学院自然资源部煤炭资源勘查与综合利用重点实验室

  • Organization
    China University of Mining & Technology-Beijing
    College of Chemistry and Chemical Engineering, Xi’an University ofScience and Technology
    Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of NaturalResources
  • 摘要

    随着化石碳资源的过度消耗,导致CO2等温室气体的大量排放,全球气候变化已经成为全人类面对的重大挑战之一,同时,煤炭资源开发利用过程中会产生大量的粉煤灰、脱硫石膏等含钙镁煤基固废。如何实现CO2高效捕集与封存是当下面临的极具挑战性课题,粉煤灰、煤气化灰渣等大宗重污染工业固废的大规模综合利用仍亟待突破。在“双碳”目标下,利用煤基固废矿化封存CO2是一项具有巨大潜力的高效应对全球变暖的策略,利用含钙镁煤基固废进行矿物碳酸化对于二氧化碳捕集与封存(CCS)以及固废的资源化处置都具有很大前景。然而,它的工业应用瓶颈依旧无法突破。综述了以典型煤基固废粉煤灰(FA)、脱硫石膏(FGDG)以及煤气化灰渣(CGS)为原料的CO2矿化技术的发展现状,旨在探讨其技术局限性的原因。首先,简要阐述了煤基固废CO2矿化的途径,揭示了煤基固废CO2矿化反应过程和原理。其次,重点讨论了典型煤基固废的矿化潜力和工艺,明晰CO2矿化过程中工艺参数对产物性能的调控机理。最后,总结了煤基固废CO2矿化产物的性能并且利用全生命周期评估(Life Cycle Assessment, LCA)阐明矿化工艺的可行性及其对环境的影响。研究将对煤基固废CO2矿化的工艺技术提供优化建议,以期推动煤炭工业的低碳转型战略目标。

  • Abstract

    With the overconsumption of fossil carbon resources, resulting in a large amount of CO2and other greenhouse gas emissions, caused by global climate change has become one of the major challenges facing all mankind. At the same time, the development and utilization of coal resources will produce a large amount of coal-based solid wastes containing calcium and magnesium, such as fly ash, desulfurization gypsum and other solid wastes. How to realize efficient CO2capture and sequestration is a very challenging issue nowadays, as well as the large-scale comprehensive utilization of fly ash, coal gasification slag, and other large-scale heavy polluting industrial solid wastes is still in need of a breakthrough. Under the goal of “double carbon”, CO2mineralization from coal-based solid waste is a potential strategy to effectively address global warming, and mineral carbonation of coal-based solid wastes containing calcium and magnesium has great prospects for carbon dioxide capture and sequestration (CCS) as well as for the resource-based disposal of solid waste. However, the industrial application bottleneck of CO2mineralization in coal-based solid waste is still unable to break through. This paper reviews the current development of CO2mineralization from fly ash (FA), desulfurization gypsum (FGDG), and coal gasification slag (CGS), with the aim of exploring the reasons for their technical limitations. Firstly, this paper briefly elaborates on the pathways for CO2mineralization of coal based solid waste, revealing the reaction process and principles of CO2mineralization of coal based solid waste. Secondly, the mineralization potential and process of typical coal-based solid waste were summarized and compared to clarify the mechanism of the regulation of the process parameters on the product properties during CO2mineralization process. Finally, the performance of CO2mineralization products from coal-based solid waste was summarized, and the feasibility of the mineralization process and its environmental impact were elucidated using a Life Cycle Assessment (LCA). This paper will provide optimization suggestions on the process technology of coal-based solid waste CO2mineralization to promote the strategic goal of low-carbon transformation in the coal industry.

  • 关键词

    煤基固废CO2矿化粉煤灰脱硫石膏煤气化渣二氧化碳捕集与封存(CCS)

  • KeyWords

    coal-based solid waste;CO2mineralization;fly ash;desulfurization gypsum;coal gasification slag;CCS

  • 基金项目(Foundation)
    国家自然科学基金资助项目(52274282);国家自然科学基金−新疆联合基金资助项目(U2003133);霍英东教育基金会高等院校青年教师基金资助项目(171102)
  • DOI
  • 引用格式
    高 影,涂亚楠,王卫东,等. 含钙镁煤基固废CO2矿化封存及其产物性能研究进展[J]. 煤炭科学技术,2024,52(5):301−315.
  • Citation
    GAO Ying,TU Yanan,WANG Weidong,et al. Research progress on CO2 mineralization of coal-based solid waste containing calcium and magnesium and its product performance[J]. Coal Science and Technology,2024,52(5):301−315.
  • 相关文章
  • 图表

    Table1

    典型煤基固废组成特征
    煤基固废种类 来源 主要化学组成质量分数/% 主要物质
    SiO2 Al2O3 Fe2O3 CaO MgO
    粉煤灰 电厂/锅炉 15~60 22~65 4~40 1~40 0.7~1.9 玻璃相、莫来石/刚玉、铁质微珠
    脱硫石膏 电厂脱硫 0.5~4.0 0.2~3.0 0.06~1.00 30~55 0.06~1.50 硫酸钙、氢氧化钙、碳酸钙
    煤气化渣 煤气化/气化炉 15~53 8~17 7~24 7~19 0.86~2.40 玻璃相、石英、莫来石

    Table2

    粉煤灰CO 2矿化能力与效率研究现状
    矿化途径 化学组成质量分数/% 矿化能力/% 矿化效率/% 操作条件 参考文献
    CaO MgO
    气−液 5 2.60 82 平均粒径40 μm,温度30 ℃ [29]
    气−液 7.20 1.5 0.80 常温常压 [30]
    气−液 24.80 13 2.70 13.90 颗粒最大粒径1.18 μm,压力3.0 MPa [31]
    气−液 3.35 0.43 21.00 84 高钙FA,温度90 ℃ [32]
    气−液 39.8 7.2 0.77 温度90 ℃,高钙FA,平均粒径0.9 mm,粉煤灰矿化之前
    已经过长期自然碳酸化
    [33]
    气−液 32.4 29.3 13.20 24 含高钙/镁矿物的粉煤灰,压力2.0 MPa和温度220 ℃ [34]
    气−液 9.30 2.51 7.18 86.40 平均粒径在820~150 μm,在混合盐水中矿化 [35]
    气−液 15.72 1.91 8.81 矿化时长240 h [36]
    气−液 30 25.8 26.4 粒径在2.2~10.0 μm,压力1.0 MPa [25]
    气−液–固 6.74 2.22 5.03(液–固)
    2.63(气–固)
    67.9(液–固)
    35.5(气–固)
    颗粒最大粒径 1.0 mm [37]
    气–固 28.42 1.91 6 28.74 高温 600 ℃,20% H2O(g) [38]
    气–固 31.95 1.90 20.70 燃煤电厂中含有CO2和SO2的烟气用于FA矿化 [39]
    气–固 31.95 18.96 18.20 74 颗粒尺寸小于 212 μm,矿化温度45 ℃ [40]
    气–固 35 11.70 48 粒径在2~6 μm,矿化温度160 ℃ [41]

    Table3

    脱硫石膏CO 2矿化的不同工艺条件及效率
    矿化途径 化学组成(质量分数)/% 助剂 矿化效率/% 操作条件 参考文献
    直接湿法矿化 CaO(32.49) NH4OH 95 15%CO2,L/S=2~200,t=10~30 min
    室温,常压
    [49]
    直接湿法矿化 CaO(32.5) NH4OH 95 15%CO2,L/S=2~200,t=10~30 min
    室温、大气压
    [50]
    直接湿法矿化 NH4OH 98 超声处理,T=25 ℃, \({P_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}} \) =0.1 MPa,t=30 min 文丘里管,
    T=20 ℃, \({P_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}} \) =0.1 MPa,L/S=13,t=120 min
    [51]
    直接湿法矿化 CaO(32.49) NH4OH 96 20~80 ℃,100~200 kPa,固液比15%~50% [52]
    间接矿化 CaO(29.55) NH4Cl 98.54 溶解, \({{\rm{C}}_{{\rm{N}}{{\rm{H}}_4}{\rm{Cl}}}} \) =4 mol/L、L/S=80∶1、T=50 ℃、t=60 min矿化反应,
    80 mL/min CO2,T=40 ℃,t=60 min
    [53]
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16技术支持: 云智互联
Baidu
map