• 论文
主办单位:煤炭科学研究总院有限公司、中国煤炭学会学术期刊工作委员会
基于PSO-DBN-ELM的管道流型辨识算法研究
  • Title

    Research on pipeline flow pattern identification algorithm based on PSO-DBN-ELM

  • 作者

    陈武选任鹏辉刘子煜申昱瞳李明桥秦学斌

  • Author

    CHEN Wuxuan;REN Penghui;LIU Ziyu;SHEN Yutong;LI Mingqiao;QIN Xuebin

  • 单位

    韩城矿业有限公司西安科技大学

  • Organization
    Hancheng Mining Co., Ltd.
    Xi'an University of Science and Technology
  • 摘要

    电容层析成像技术(Electrical Capacitance Tomography, ECT)是一种基于电容敏感场的过程层析成像技术,该技术通过传感器测量所需电容数据,实现充填管道流型检测,从而满足管道流型可控性。传统ECT流型辨识方法识别速率较低、运算较为复杂,成像结果也存在误差。为了改善传统方法存在的问题,提出一种基于粒子群优化算法(Particle Swarm Optimization, PSO)优化深度置信网络—极限学习机(Deep Belief Networks-Extreme Learning Machine, DBN-ELM)的流型识别算法,电容数据采集模块采集电容数据并制作相应数据集,经过DBN网络提取电容数据特征,在DBN网络顶层添加ELM完成对抽象电容流型数据的辨识;DBN隐含层神经元个数影响着整个模型的学习能力和信息处理能力,因此引入PSO优化算法首先计算出每层玻尔兹曼机(Restricted Boltzmann Machine, RBM)的最优神经元个数。与其他流型辨识算法相比,所需时间短,成像效果较好,对加快工业智能化发展有着重要的意义。

  • Abstract

    Electrical Capacitance Tomography (ECT) is a process tomography technique based on capacitance-sensitive field, which can achieve the flow pattern detection of filled pipes by measuring the required capacitance data with sensors to meet the controllability of pipe flow patterns. The traditional ECT flow pattern recognition method has the disadavntages of low recognition rate, more complicated operation and error in imaging effect. In order to slove the problems of traditional methods, this paper proposes a flow pattern recognition algorithm based on PSO (Particle Swarm Optimization) optimized DBN-ELM (Deep Belief Networks-Extreme Learning Machine), in which the capacitance data acquisition module collects data and creates the corresponding data set, extracts the capacitance data features through DBN network, and adds ELM at the top layer of DBN identify the abstract capacitive data to complete the number of neurons in the hidden layer of DBN affects the learning ability and information processing ability of the whole model, so the PSO optimization algorithm is introduced to calculate the optimal number of neurons for each layer of Restricted Boltzmann Machine (RBM) first, which takes less time and has better imaging effect compared with other flow pattern recognition algorithms. It is of vital importance to accelerate the development of industrial intelligence.

  • 关键词

    电容层析成像充填管道流型辨识PSO视觉检测重构算法

  • KeyWords

    electrical capacitance tomography;filling pipeline;flow pattern identification;PSO;visual detection;reconstruction algorithm

  • 基金项目(Foundation)
    国家自然科学基金项目(51904224);陕西省自然科学基金项目(2022JM-314)
  • DOI
  • 引用格式
    陈武选, 任鹏辉, 刘子煜, 申昱瞳, 李明桥, 秦学斌. 基于PSO-DBN-ELM的管道流型辨识算法研究[J]. 矿业安全与环保, 2024, 51(2): 146-152. DOI: 10.19835/j.issn.1008-4495.20221099
  • Citation
    CHEN Wuxuan, REN Penghui, LIU Ziyu, SHEN Yutong, LI Mingqiao, QIN Xuebin. Research on pipeline flow pattern identification algorithm based on PSO-DBN-ELM[J]. Mining Safety & Environmental Protection, 2024, 51(2): 146-152. DOI: 10.19835/j.issn.1008-4495.20221099
  • 图表
    电容传感器阵列安装示意图
    电容传感器阵列安装示意图
    极板施加激励示意图
    极板施加激励示意图
    12电极ECT传感器仿真模型
    12电极ECT传感器仿真模型
    ECT静态实验系统
    ECT静态实验系统
    各流型测量示意图
    各流型测量示意图
    各流型重建图像
    各流型重建图像
    ELM-DBN模型结构图
    ELM-DBN模型结构图
    不同层数隐含层辨识误差
    不同层数隐含层辨识误差

    Table1

    隐含层不同神经元个数辨识准确率
    方法 训练集数量 测试集数量 隐含层结构 平均辨识准确率/%
    PSO-DBN-ELM 600 120 89-103-94-43 97.5
    经验法 600 120 55-65-33-24 95.7
    经验法 600 120 95-110-70-65 93.6
    经验法 600 120 20-30-42-22 92.5

    Table2

    模型整体参数
    PSO-DBN-ELM参数名称 参数值
    输入层神经元个数 66
    隐含层1神经元个数 89
    隐含层2神经元个数 103
    隐含层3神经元个数 94
    隐含层4神经元个数 43
    ELM隐含层神经元个数 87
    输出层神经元个数 4

    Table3

    流型辨识准确率
    流型 辨识准确率/%
    ELM DBN-BP PSO-DBN-ELM
    单泡流 94.10 96.60 97.50
    双泡流 93.70 94.60 95.00
    多泡流 91.50 92.40 93.20
    层流 93.90 94.50 98.60
    平均 93.30 94.80 96.15
相关问题

主办单位:煤炭科学研究总院有限公司 中国煤炭学会学术期刊工作委员会

©版权所有2015 煤炭科学研究总院有限公司 地址:北京市朝阳区和平里青年沟东路煤炭大厦 邮编:100013
京ICP备05086979号-16技术支持: 云智互联
Baidu
map